0755-82908211 info@sensorstech.com 耐特恩网站
Case 传感知识
来源:
目前多数以加速度传感器搭配陀螺仪传感器通常经过整合设计、来建构可进行动态追踪与捕捉3D空间的完整运动轨迹。以现有的MEMS陀螺仪传感器为例,MEMS陀螺仪传感器又名角速度传感器,其实MEMS陀螺仪传感器的核心组件,是一组经过硅制程的微加工机械组合,在硅结构设计上为参照一组如同音叉机制的运转结构,其应用装置的角速度感测,其工作原理为由相互正交之振动与转动导致的交变科里奥利力,至于振动的物体由柔软之弹性结构悬挂于基座上,MEMS陀螺仪传感器整体动力学系统,是由2D弹性阻尼系统整合,系统中的振动和转动所产生的科里奥利力将角速度之能量转移至传感模式,角速率转换为特定感应结构的直向位移,透过MEMS的结构进而取得变化量的感测信息。至于陀螺仪传感器与加速度传感器最大的不同是,陀螺仪传感器的量测数据较偏向斜度、偏航等动态信息,反而与重力、线性动作感测数据较无关,陀螺仪传感器多在侦测物体水平改变状态时较能达到效用,无法如加速度传感器对于物体移动或移动动能具较高的感测能力。相反的,加速度传感器可在侦测物体移动状态具较高实用效益,但却无法感测物体的小幅角度改变。因而将加速度传感器与陀螺仪传感器整合,即可让动态感测系统同时具备直向速度与转动数据的感测信息,让动态感测系统的侦测范围更全面、完整。在MEMS的节能设计方面,在系统毋须使用动态感测应用时,MEMS可以搭配关闭部分功能达到高效节能效用。例如,在陀螺仪传感器设计方案中,可将陀螺仪传感器的传递讯号与调节电路区分为马达驱动部份、加速度传感器感应电路两大部份,马达驱动部份为利用静电驱动的原理令机械组件产生前/后振荡,产生感测过程所需的谐振作用,至于感应部份为利用量测系统电容变化量,来取得科里奥利力的数值变化,于对应感应质点上所生成的微弱位移数据,将角速率变化量,转换成对比角速度变化量之对应模拟信号(或数字信号)输出。
发布时间: 2017 - 12 - 18
来源:
客户在选用倾角传感器之前对倾角传感器部分参数有要求;例如我想要一个精度为0.05°电压输出,双轴、测量范围60°的接口类型为RS485金属外壳倾角传感器,那么型号是什么呢?下面介绍一下上海直川常用倾角传感器型号的命名规则,用户可根据规则找对应的倾角传感器型号。倾角传感器各位代码定义: 第一二位公司代码“ZC”,第三位产品分类:倾角传感器为“T”第四位表示轴数定义,倾角传感器有单轴(1表示)、双轴(2表示)、三轴(3表示)其他位数请看下图:注释:第4码 倾角轴数1 ------- 单轴2 ------- 双轴3 ------- 三轴第5,6码 量程,双轴以实际角度编码,单轴编码见表格三;第7码 精度定义 具体精度范围及代码见表格三,其中A~F为兼容旧产品, 新产品不可使用;第8码 同类编号 在所定义参数都相同的情况下,做进一步区别,优先使用数字编码;第9码  横杠 第10码 结构类型 具体参数及代码见表格三;第11码 接口类型 具体类型及代码见表格三;第12码 电源电压 具体参数及代码见表格三;第13码 横杠 14-16码  客户定做标识  以客户中文拼音首字母缩写表示,一般2~3个字母。示例: 那么我们要找的精度为0.05°电压输出,双轴、测量范围60°的接口类型为RS485金属外壳倾角传感器的型号为ZCT2(双轴)60(测量范围60度)F(精度小于等于0.05°电压输出X(未定义)—L(金属外壳)B(接口类型RS485)X(电源电压待定)那么这个型号就是ZCT260FXLBXX(X表示待定多种选择)。
发布时间: 2017 - 12 - 13
来源:
无论是CCD还是CMOS,它们都采用感光元件作为影像捕获的基本手段,CCD/CMOS感光元件的核心都是一个感光二极管(photodiode),该二极管在接受光线照射之后能够产生输出电流,而电流的强度则与光照的强度对应。 但在周边组成上,CCD的感光元件与CMOS的感光元件并不相同,前者的感光元件除了感光二极管之外,包括一个用于控制相邻电荷的存储单元,感光二极管占据了绝大多数面积—换一种说法就是,CCD感光元件中的有效感光面积较大,在同等条件下可接收到较强的光信号,对应的输出电信号也更明晰。而CMOS感光元件的构成就比较复杂,除处于核心地位的感光二极管之外,它还包括放大器与模数转换电路,每个像点的构成为一个感光二极管和三颗晶体管,而感光二极管占据的面积只是整个元件的一小部分,造成CMOS传感器的开口率远低于CCD (开口率:有效感光区域与整个感光元件的面积比值);这样在接受同等光照及元件大小相同的情况下,CMOS感光元件所能捕捉到的光信号就明显小于CCD元件,灵敏度较低;体现在输出结果上,就是CMOS传感器捕捉到的图像内容不如CCD传感器来得丰富,图像细节丢失情况严重且噪声明显,这也是早期CMOS 传感器只能用于低端场合的一大原因。 CMOS开口率低造成的另一个麻烦在于,它的像素点密度无法做到媲美CCD的地步,因为随着密度的提高,感光元件的比重面积将因此缩小,而CMOS开口率太低,有效感光区域小得可怜,图像细节丢失情况会愈为严重。因此在传感器尺寸相同的前提下,CCD的像素规模总是高于同时期的CMOS传感器,这也是CMOS长期以来都未能进入主流数码相机市场的重要原因之一。每个感光元件对应图像传感器中的一个像点,由于感光元件只能感应光的强度,无法捕获色彩信息,因此必须在感光元件上方覆盖彩色滤光片。在这方面,不同的传感器厂商有不同的解决方案,最常用的做法是覆盖R...
发布时间: 2017 - 12 - 13
来源:
压力传感器是工业实践、仪器仪表控制中最为常用的一种传感器,并广泛应用于各种工业自控环境,涉及水利水电、铁路交通、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。 1954年C.S.史密斯详细研究了硅的压阻效应,从此开始用硅制造压力传感器。早期的硅压力传感器是半导体应变计式的。后来在N型硅片上定域扩散P型杂质形成电阻条,并接成电桥,制成芯片。此芯片仍需粘贴在弹性元件上才能敏感压力的变化。采用这种芯片作为敏感元件的传感器称为扩散型压力传感器。这两种传感器都同样采用粘片结构,因而存在滞后和蠕变大、固有频率低、不适于动态测量以及难于小型化和集成化、精度不高等缺点。 70年代以来制成了周边固定支撑的电阻和硅膜片的一体化硅杯式扩散型压力传感器。它不仅克服了粘片结构的固有缺陷,而且能将电阻条、补偿电路和信号调整电路集成在一块硅片上,甚至将微型处理器与传感器集成在一起,制成智能传感器。这种新型传感器的优点是:频率响应高,适于动态测量;体积小,适于微型化;精度高,可达0.1~0.01%;灵敏高,比金属应变计高出很多倍,有些应用场合可不加放大器;无活动部件,可靠性高,能工作于振动、冲击、腐蚀、强干扰等恶劣环境。其缺点是温度影响较大、工艺较复杂和造价高等。 压力传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。这种传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。 压阻式压力传感器又称为固态压力传感器,它不同于粘贴式应变计需通过弹性敏感元件间接感受外力,而是直接通过硅膜片感受被测压...
发布时间: 2017 - 12 - 13
来源:
此文主要描述并使用MMA7260QT三轴加速计和低功耗的9S08QG8八位单片机实现求解位置的算法 。在今天先进的电子市场,有不少增加了许多特性和智能的多功能的产品。定位和游戏只是得益于获取到的位置信息的一部分市场。一个获取这种信息的可选方案是通过使用惯性传感器。从这些传感器中取得的信号需要进行一些处理,因为在加速度和位置之间没有一种直接转换。为了获得位置,需要对加速度进行二次积分。本文介绍一种简单的算法实现加速度的二重积分。为了获取加速度的二重积分,一个简单的积分要进行两次,因为这样也可以顺便获取速度。接下来要展示的算法,能够应该于任何传感轴,所以一维、二维、三维的位置都可以被计算出。当在获取三维位置信息时,要特别地除去重力加速度的影响。下面的算法实现还包括了一个二维系统的例子(比如鼠标)。 应用潜力这种算法的应用潜力在于个人导航、汽车导航和(back-up)GPS、防盗设备、地图追踪、3D游戏、计算机鼠标等等。这类产品都需要用到求解位置信息的算法。本文所介绍的算法在位移精度要求不是很严格的情况下很有用。其他的情况和影响特别是应用,当采用本文算法时,需要考虑一下。对最终程序进行微小的修改和调整,这种算法能够达到更高的精度。 理论知识和算法理解本文算法的最好方法是回顾一下数学上的积分知识。加速度是一个对象速度的变化速率。同时,速度是同样一个对象位置的变化速率。换句话说,速度是位置的导数,加速度是速度的导数,因此如下公式:积分和导数相反。如果一个物体的加速度已知,那么我们能够利用二重积分获得物体的位置。假设初始条件为0,那么有如下公式:一个理解这个公式的方法是将积分定义成曲线下面包围的区域,积分运算结果是极小区域的总和,区域的宽度趋近于0。换句话说,积分的和表示了一个物理变量的大小(速度)。利用前面的一个概念——曲线下面的区域,我们能得出一个结论...
发布时间: 2017 - 12 - 11
0755-82908211 info@sensorstech.com 耐特恩公众号
友情链接:    必优  |  必优网  |  华创测试  |  多分量传感器  |  力传感器  |  压力传感器  |  扭矩传感器
Copyright © 2022 深圳耐特恩科技有限公司



 

 

犀牛云提供云计算服务
ignore
5
电话
    ignore
6
二维码
    ignore
分享