0755-82908211 info@sensorstech.com 耐特恩网站
Case 传感知识
来源:
按照被测量的物理性质,将 微型传感器分为化学微传感器、生物微传感器、物理微传感器等,简要介绍一下每种类型中典型的微传感器:(1)离子传感器——化学型离子传感器是将溶液中的离子活度转换为电信号的传感器。基本原理是利用固定在敏感膜上的离子识别材料有选择性的结合被传感的离子,从而发生膜电位或膜电压的改变,达到检测目的。离子敏传感器广泛用在化学、医药、食品以及生物工程等行业中。(2)基因传感器——生物型基因传感器通过固定在感受器表面上的已知核苷酸序列的单链脱氧核糖核酸(Deoxyribo Nucleic Acid,DNA)分子(也称为ssDNA探针),和另一条互补的ssDNA分子(也称为目称DNA或靶DNA)杂交,形成双链DNA(dsDNA),换能器将杂交过程或结果所产生的变化转换成电、光、声等物理信号,通过解析这些响应信号,给出相关基因的信息。基因传感器也称DNA传感器。(3)声表面波传感器——物理型声表面波(Surface Acoustic Wave,SAW)传感器是利用声表面波技术和微机电系统技术,将各种非电量信息,如压力、温度、流量、磁场强度、加速度、角速度等的变化转换为声表面波振器振荡频率的变化的装置。
发布时间: 2018 - 01 - 24
来源:
如果要选择加速度传感器,就一定要了解下它的选型指南。  输出型式  这个是最先需要考虑的。这个取决于你系统中和加速度传感器之间的接口。一般模拟输出的电压和加速度是成比例的,比如2.5V对应0g的加速度,2.6V对应于0.5g的加速度。数字输出一般使用脉宽调制(PWM)信号。  如果你使用的微控制器只有数字输入,比如BASIC Stamp,那你就只能选择数字输出的加速度传感器了,但是问题是你必须占用额外的一个时钟单元用来处理PWM信号,同时对处理器也是一个不小的负担。  如果你使用的微控制器有模拟输入口,比如PIC/AVR/OOPIC,你可以非常简单的使用模拟接口的加速度传感器,所需要的就是在程序里加入一句类似"acceleration=read_adc()"的指令,而且处理此指令的速度只要几微秒。  测量轴数量  对于多数项目来说,两轴的加速度传感器已经能满足多数应用了。对于某些特殊的应用,比如UAV,ROV控制,三轴的加速度传感器可能会适合一点。  最大测量值  如果你只要测量机器人相对于地面的倾角,那一个±1.5g加速度传感器就足够了。但是如果你需要测量机器人的动态性能,±2g也应该足够了。要是你的机器人会有比如突然启动或者停止的情况出现,那你需要一个±5g的传感器。  灵敏度  一般来说,越灵敏越好。越灵敏的传感器对一定范围内的加速度变化更敏感,输出电压的变化也越大,这样就比较容易测量,从而获得更精确的测量值。最小加速度测量值也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可用值,以确保最佳信噪比。最大测量极限要考虑加速度计自身的非线性影响和后续仪器的最大输出电压,估算方法:最大被测加速度×传感器的电荷 / 电压灵敏度,以上数值是否超过配套仪器的最大输入电荷 / 电压值,建议如已知被测加速度范围可在...
发布时间: 2018 - 01 - 24
来源:
磁致伸缩位移传感器(Magnetostrictive Position Sensor),是基于铁磁性材料磁致伸缩效应而开发的一种具有特殊优点的位移检测装置,具有高可靠性、高分辨率、非接触测量、耐油抗污等特殊优点,能在恶劣的工业环境下,对各种运动部件的位移(位置)、速度进行连续、精确、实时的检测,是实现精确操作和控制的重要元件,可大幅提高整个系统的精度和效率。磁致伸缩位移传感器技术名词也有对应的要求和意义,我们来了解一下:绝对位置输出传感器的输出是相对于一个绝对(固定)参考点的位置,传感器断电再恢复供电时,无需复位,不像一般增量式传感器(如增量式编码器,增量式光栅尺),断电后需要进行系统复位,才能继续测量。重复精度沿着行程测量时,当磁铁从相同的方向重复到达同一位置时,传感器输出的差值。更新时间传感器进行两次测量之间的时间间隔。传感器的量程越大,所需的更新时间越长。非接触式测量磁致伸缩式位移传感器采用非接触的磁感应测量工作原理,因此在产品全寿命期内不存在机械磨损问题,同时这种测量方式可以有效消除由于振动造成的测量误差,提高传感器的可靠性和使用寿命。分辨率指传感器测量输出值最末位数所代表的位移量。滞后这里指游标磁环沿测量行程方向,达到并超过某一位置后,又反向通过该位置时,两次测量输出值间的差值。但磁致伸缩位移传感器的实际滞后非常小,在大多数应用中均可忽略不计。
发布时间: 2018 - 01 - 24
来源:
目前,温度传感器越来越多的在不同领域有所使用,在使用过程中不可避免的会出现这样或那样的问题。温度传感器技术已经非常成熟了,在各工厂中非常常见,温度传感器经常和一些仪表配套使用,在配套使用过程中经常有一些小的故障。故在此列举几种常见的故障及遇到故障之后的解决方法:第一、被测介质温度升高或者降低时变送器输出没有变化。这种情况大多是温度传感器密封的问题,可能是由于温度传感器没有密封好或者是在焊接的时候不小心将传感器焊了个小洞,这种情况一般需要更换传感器外壳才能解决。第二、输出信号不稳定。这种原因是温度源本事的原因,温度源本事就是一个不稳定的温度,如果是仪表显示不稳定,那就是仪表的抗干扰能力不强的原因。第三、变送器输出误差大。这种情况原因就比较多,可能是选用的温度传感器的电阻丝不对导致量程错误,也有可以能是传感器出厂的时候没有标定好。温度传感器出现故障的情况很少见,只要出厂的时候进行仔细的检测,这些情况都是可以避免的,所以温度传感器在出厂的时候一地要进行检验,客户也可找传感器厂家索要出厂检测报告进行参考。
发布时间: 2018 - 01 - 24
来源:
在隧道或高密度环境下,使用手机来导航会出现卡顿。要实现更流畅的导航,以及精准的定位,Mems传感器大有可用之处,受限于手机的体积,Mems传感器如何发挥自己的优势。同时,在Mems传感器和其他定位技术相融合作用下,将可实现更好的室内定位体验。一、手机内置运动、气压传感器已经普及 兼顾精度、体积、系统优化“目前手机导航主要还是依赖GPS和WIFI,而在隧道或高密度环境下,这些信号强度弱,或是直接丢星,无法进行导航。此时,实际是可以依靠手机里的MEMS传感单元的。” 众所周知,目前智能机里都集成了众多MEMS传感器,比如加速度计、陀螺仪、磁力计、气压计等。在没有GPS信号的情况下,可以依靠陀螺仪来判断方向的变化,可以利用加速度计来判断速度和位移的变化。但手机里面所用的加速度计和陀螺仪都是消费级产品,无论是瞬时精度、积分精度还是长期稳定性都较差,这是受器件的功耗、体积和封装的限制。一般体积和功耗越小,器件的精度会越差,这是设计上的权衡。说到封装,一般手机里用的都是塑料封装,这是受成本的限制,塑料封装对外部环境敏感,比如温湿度以及压力的影响。除此之外,与地图匹配运行会是非常重要的,如果软件做的好,运行轨迹与地图完全匹配的时候,会对MEMS传感器的要求降低。这是因为在汽车转弯的时候,不太可能每隔几度就有一个弯道,而且这些弯道都在同一点,大部分情况下,一个转弯点上只有2-4个弯道,这时角度再出现些许偏差,就没有那么的严重。二、MEMS传感器与其他定位技术融合由于半导体电子技术本身的特点,单独利用MEMS传感器进行室内定位的挑战是会出现绝对位置确定及误差等问题。GPS也有信号干扰、信号不能完全覆盖等弱点,多技术的融合是必然趋势。但好的一方面是,当前的智能手机中GPS、WIFI、蓝牙的配置也很普及。如何把这些现有的资源整合成一个解决方案是目前业界努力的方向。室内定位解决方案目前分两个层面,...
发布时间: 2018 - 01 - 22
0755-82908211 info@sensorstech.com 耐特恩公众号
友情链接:    必优  |  必优网  |  华创测试  |  多分量传感器  |  力传感器  |  压力传感器  |  扭矩传感器
Copyright © 2022 深圳耐特恩科技有限公司



 

 

犀牛云提供云计算服务
ignore
5
电话
    ignore
6
二维码
    ignore
分享